[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B. The Organization of the Screen

On a text-only terminal, the Emacs display occupies the whole screen. On the X Window System, Emacs creates its own X windows to use. We use the term frame to mean an entire text-only screen or an entire X window used by Emacs. Emacs uses both kinds of frames in the same way to display your editing. Emacs normally starts out with just one frame, but you can create additional frames if you wish. See section P. Frames and X Windows.

When you start Emacs, the entire frame except for the top and bottom is devoted to the text you are editing. This area is called the window. At the top there is normally a menu bar where you can access a series of menus; then there may be a tool bar, a row of icons that perform editing commands if you click on them. Below this, the window begins. The last line is a special echo area or minibuffer window, where prompts appear and where you can enter information when Emacs asks for it. See below for more information about these special lines.

You can subdivide the large text window horizontally or vertically into multiple text windows, each of which can be used for a different file (see section O. Multiple Windows). In this manual, the word "window" always refers to the subdivisions of a frame within Emacs.

The window that the cursor is in is the selected window, in which editing takes place. Most Emacs commands implicitly apply to the text in the selected window (though mouse commands generally operate on whatever window you click them in, whether selected or not). The other windows display text for reference only, unless/until you select them. If you use multiple frames under the X Window System, then giving the input focus to a particular frame selects a window in that frame.

Each window's last line is a mode line, which describes what is going on in that window. It appears in inverse video, if the terminal supports that; its contents normally begin with `--:-- *scratch*' when Emacs starts. The mode line displays status information such as what buffer is being displayed above it in the window, what major and minor modes are in use, and whether the buffer contains unsaved changes.

B.1 Point  The place in the text where editing commands operate.
B.2 The Echo Area  Short messages appear at the bottom of the screen.
B.3 The Mode Line  Interpreting the mode line.
B.4 The Menu Bar  How to use the menu bar.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.1 Point

Within Emacs, the terminal's cursor shows the location at which editing commands will take effect. This location is called point. Many Emacs commands move point through the text, so that you can edit at different places in it. You can also place point by clicking mouse button 1.

While the cursor appears to point at a character, you should think of point as between two characters; it points before the character that appears under the cursor. For example, if your text looks like `frob' with the cursor over the `b', then point is between the `o' and the `b'. If you insert the character `!' at that position, the result is `fro!b', with point between the `!' and the `b'. Thus, the cursor remains over the `b', as before.

Sometimes people speak of "the cursor" when they mean "point," or speak of commands that move point as "cursor motion" commands.

Text-only terminals have only one cursor, and when output is in progress it must appear where the output is being displayed. This does not mean that point is moving. It is only that Emacs has no way to show you the location of point except when the terminal is idle.

If you are editing several files in Emacs, each in its own buffer, each buffer has its own point location. A buffer that is not currently displayed remembers where point is in case you display it again later.

When Emacs displays multiple windows, each window has its own point location. On text-only terminals, the cursor shows the location of point in the selected window. On graphical terminals, Emacs shows a cursor in each window; the selected window's cursor is solid, and the other cursors are hollow. Either way, the cursor or cursors tell you which window is selected. If the same buffer appears in more than one window, each window has its own position for point in that buffer, and (when possible) its own cursor.

See section J.13 Displaying the Cursor, for customization options that control display of the cursor or cursors.

The term "point" comes from the character `.', which was the command in TECO (the language in which the original Emacs was written) for accessing the value now called "point."


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.2 The Echo Area

The line at the bottom of the frame (below the mode line) is the echo area. It is used to display small amounts of text for several purposes.

Echoing means displaying the characters that you type. Outside Emacs, the operating system normally echoes all your input. Emacs handles echoing differently.

Single-character commands do not echo in Emacs, and multi-character commands echo only if you pause while typing them. As soon as you pause for more than a second in the middle of a command, Emacs echoes all the characters of the command so far. This is to prompt you for the rest of the command. Once echoing has started, the rest of the command echoes immediately as you type it. This behavior is designed to give confident users fast response, while giving hesitant users maximum feedback. You can change this behavior by setting a variable (see section J.12 Customization of Display).

If a command cannot be executed, it may display an error message in the echo area. Error messages are accompanied by beeping or by flashing the screen. The error also discards any input you have typed ahead.

Some commands display informative messages in the echo area. These messages look much like error messages, but they are not announced with a beep and do not throw away input. Sometimes the message tells you what the command has done, when this is not obvious from looking at the text being edited. Sometimes the sole purpose of a command is to show you a message giving you specific information--for example, C-x = displays a message describing the character position of point in the text and its current column in the window. Commands that take a long time often display messages ending in `...' while they are working, and add `done' at the end when they are finished.

Echo-area informative messages are saved in an editor buffer named `*Messages*'. (We have not explained buffers yet; see N. Using Multiple Buffers, for more information about them.) If you miss a message that appears briefly on the screen, you can switch to the `*Messages*' buffer to see it again. (Successive progress messages are often collapsed into one in that buffer.)

The size of `*Messages*' is limited to a certain number of lines. The variable message-log-max specifies how many lines. Once the buffer has that many lines, each line added at the end deletes one line from the beginning. See section AD.2 Variables, for how to set variables such as message-log-max.

The echo area is also used to display the minibuffer, a window that is used for reading arguments to commands, such as the name of a file to be edited. When the minibuffer is in use, the echo area begins with a prompt string that usually ends with a colon; also, the cursor appears in that line because it is the selected window. You can always get out of the minibuffer by typing C-g. See section E. The Minibuffer.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.3 The Mode Line

Each text window's last line is a mode line, which describes what is going on in that window. When there is only one text window, the mode line appears right above the echo area; it is the next-to-last line in the frame. The mode line starts and ends with dashes. On a text-mode display, the mode line is in inverse video if the terminal supports that; on a graphics display, the mode line has a 3D box appearance to help it stand out.

Normally, the mode line looks like this:

 
-cs:ch  buf      (major minor)--line--pos------

This gives information about the buffer being displayed in the window: the buffer's name, what major and minor modes are in use, whether the buffer's text has been changed, and how far down the buffer you are currently looking.

ch contains two stars `**' if the text in the buffer has been edited (the buffer is "modified"), or `--' if the buffer has not been edited. For a read-only buffer, it is `%*' if the buffer is modified, and `%%' otherwise.

buf is the name of the window's buffer. In most cases this is the same as the name of a file you are editing. See section N. Using Multiple Buffers.

The buffer displayed in the selected window (the window that the cursor is in) is also Emacs's current buffer, the one that editing takes place in. When we speak of what some command does to "the buffer," we are talking about the current buffer.

line is `L' followed by the current line number of point. This is present when Line Number mode is enabled (which it normally is). You can optionally display the current column number too, by turning on Column Number mode (which is not enabled by default because it is somewhat slower). See section J.10 Optional Mode Line Features.

pos tells you whether there is additional text above the top of the window, or below the bottom. If your buffer is small and it is all visible in the window, pos is `All'. Otherwise, it is `Top' if you are looking at the beginning of the buffer, `Bot' if you are looking at the end of the buffer, or `nn%', where nn is the percentage of the buffer above the top of the window.

major is the name of the major mode in effect in the buffer. At any time, each buffer is in one and only one of the possible major modes. The major modes available include Fundamental mode (the least specialized), Text mode, Lisp mode, C mode, Texinfo mode, and many others. See section R. Major Modes, for details of how the modes differ and how to select one.

Some major modes display additional information after the major mode name. For example, Rmail buffers display the current message number and the total number of messages. Compilation buffers and Shell buffers display the status of the subprocess.

minor is a list of some of the minor modes that are turned on at the moment in the window's chosen buffer. For example, `Fill' means that Auto Fill mode is on. `Abbrev' means that Word Abbrev mode is on. `Ovwrt' means that Overwrite mode is on. See section AD.1 Minor Modes, for more information. `Narrow' means that the buffer being displayed has editing restricted to only a portion of its text. This is not really a minor mode, but is like one. See section AC.22 Narrowing. `Def' means that a keyboard macro is being defined. See section AD.3 Keyboard Macros.

In addition, if Emacs is currently inside a recursive editing level, square brackets (`[...]') appear around the parentheses that surround the modes. If Emacs is in one recursive editing level within another, double square brackets appear, and so on. Since recursive editing levels affect Emacs globally, not just one buffer, the square brackets appear in every window's mode line or not in any of them. See section AC.26 Recursive Editing Levels.

Non-windowing terminals can only show a single Emacs frame at a time (see section P. Frames and X Windows). On such terminals, the mode line displays the name of the selected frame, after ch. The initial frame's name is `F1'.

cs states the coding system used for the file you are editing. A dash indicates the default state of affairs: no code conversion, except for end-of-line translation if the file contents call for that. `=' means no conversion whatsoever. Nontrivial code conversions are represented by various letters--for example, `1' refers to ISO Latin-1. See section Q.7 Coding Systems, for more information. If you are using an input method, a string of the form `i>' is added to the beginning of cs; i identifies the input method. (Some input methods show `+' or `@' instead of `>'.) See section Q.4 Input Methods.

When you are using a character-only terminal (not a window system), cs uses three characters to describe, respectively, the coding system for keyboard input, the coding system for terminal output, and the coding system used for the file you are editing.

When multibyte characters are not enabled, cs does not appear at all. See section Q.2 Enabling Multibyte Characters.

The colon after cs can change to another string in certain circumstances. Emacs uses newline characters to separate lines in the buffer. Some files use different conventions for separating lines: either carriage-return linefeed (the MS-DOS convention) or just carriage-return (the Macintosh convention). If the buffer's file uses carriage-return linefeed, the colon changes to either a backslash (`\') or `(DOS)', depending on the operating system. If the file uses just carriage-return, the colon indicator changes to either a forward slash (`/') or `(Mac)'. On some systems, Emacs displays `(Unix)' instead of the colon even for files that use newline to separate lines.

You can customize the mode line display for each of the end-of-line formats by setting each of the variables eol-mnemonic-unix, eol-mnemonic-dos, eol-mnemonic-mac, and eol-mnemonic-undecided to any string you find appropriate. See section AD.2 Variables, for an explanation of how to set variables.

See section J.10 Optional Mode Line Features, for features that add other handy information to the mode line, such as the current column number of point, the current time, and whether new mail for you has arrived.

The mode line is mouse-sensitive; when you move the mouse across various parts of it, Emacs displays help text to say what a click in that place will do. See section P.6 Mode Line Mouse Commands.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.4 The Menu Bar

Each Emacs frame normally has a menu bar at the top which you can use to perform certain common operations. There's no need to list them here, as you can more easily see for yourself.

When you are using a window system, you can use the mouse to choose a command from the menu bar. An arrow pointing right, after the menu item, indicates that the item leads to a subsidiary menu; `...' at the end means that the command will read arguments from the keyboard before it actually does anything.

To view the full command name and documentation for a menu item, type C-h k, and then select the menu bar with the mouse in the usual way (see section G.2 Documentation for a Key).

On text-only terminals with no mouse, you can use the menu bar by typing M-` or F10 (these run the command tmm-menubar). This command enters a mode in which you can select a menu item from the keyboard. A provisional choice appears in the echo area. You can use the left and right arrow keys to move through the menu to different choices. When you have found the choice you want, type RET to select it.

Each menu item also has an assigned letter or digit which designates that item; it is usually the initial of some word in the item's name. This letter or digit is separated from the item name by `=>'. You can type the item's letter or digit to select the item.

Some of the commands in the menu bar have ordinary key bindings as well; if so, the menu lists one equivalent key binding in parentheses after the item itself.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.5 Kinds of User Input

GNU Emacs uses an extension of the ASCII character set for keyboard input; it also accepts non-character input events including function keys and mouse button actions.

ASCII consists of 128 character codes. Some of these codes are assigned graphic symbols such as `a' and `='; the rest are control characters, such as Control-a (usually written C-a for short). C-a gets its name from the fact that you type it by holding down the CTRL key while pressing a.

Some ASCII control characters have special names, and most terminals have special keys you can type them with: for example, RET, TAB, DEL and ESC. The space character is usually referred to below as SPC, even though strictly speaking it is a graphic character whose graphic happens to be blank. Some keyboards have a key labeled "linefeed" which is an alias for C-j.

Emacs extends the ASCII character set with thousands more printing characters (see section Q. International Character Set Support), additional control characters, and a few more modifiers that can be combined with any character.

On ASCII terminals, there are only 32 possible control characters. These are the control variants of letters and `@[]\^_'. In addition, the shift key is meaningless with control characters: C-a and C-A are the same character, and Emacs cannot distinguish them.

But the Emacs character set has room for control variants of all printing characters, and for distinguishing between C-a and C-A. The X Window System makes it possible to enter all these characters. For example, C-- (that's Control-Minus) and C-5 are meaningful Emacs commands under X.

Another Emacs character-set extension is additional modifier bits. Only one modifier bit is commonly used; it is called Meta. Every character has a Meta variant; examples include Meta-a (normally written M-a, for short), M-A (not the same character as M-a, but those two characters normally have the same meaning in Emacs), M-RET, and M-C-a. For reasons of tradition, we usually write C-M-a rather than M-C-a; logically speaking, the order in which the modifier keys CTRL and META are mentioned does not matter.

Some terminals have a META key, and allow you to type Meta characters by holding this key down. Thus, Meta-a is typed by holding down META and pressing a. The META key works much like the SHIFT key. Such a key is not always labeled META, however, as this function is often a special option for a key with some other primary purpose. Sometimes it is labeled ALT or EDIT; on a Sun keyboard, it may have a diamond on it.

If there is no META key, you can still type Meta characters using two-character sequences starting with ESC. Thus, you can enter M-a by typing ESC a. You can enter C-M-a by typing ESC C-a. ESC is allowed on terminals with META keys, too, in case you have formed a habit of using it. The X Window System provides several other modifier keys that can be applied to any input character. These are called SUPER, HYPER and ALT. We write `s-', `H-' and `A-' to say that a character uses these modifiers. Thus, s-H-C-x is short for Super-Hyper-Control-x. Not all X terminals actually provide keys for these modifier flags--in fact, many terminals have a key labeled ALT which is really a META key. The standard key bindings of Emacs do not include any characters with these modifiers. But you can assign them meanings of your own by customizing Emacs.

Keyboard input includes keyboard keys that are not characters at all: for example function keys and arrow keys. Mouse buttons are also outside the gamut of characters. You can modify these events with the modifier keys CTRL, META, SUPER, HYPER and ALT, just like keyboard characters.

Input characters and non-character inputs are collectively called input events. See section `Input Events' in The Emacs Lisp Reference Manual, for more information. If you are not doing Lisp programming, but simply want to redefine the meaning of some characters or non-character events, see AD. Customization.

ASCII terminals cannot really send anything to the computer except ASCII characters. These terminals use a sequence of characters to represent each function key. But that is invisible to the Emacs user, because the keyboard input routines recognize these special sequences and convert them to function key events before any other part of Emacs gets to see them.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.6 Keys

A key sequence (key, for short) is a sequence of input events that are meaningful as a unit--as "a single command." Some Emacs command sequences are just one character or one event; for example, just C-f is enough to move forward one character in the buffer. But Emacs also has commands that take two or more events to invoke.

If a sequence of events is enough to invoke a command, it is a complete key. Examples of complete keys include C-a, X, RET, NEXT (a function key), DOWN (an arrow key), C-x C-f, and C-x 4 C-f. If it isn't long enough to be complete, we call it a prefix key. The above examples show that C-x and C-x 4 are prefix keys. Every key sequence is either a complete key or a prefix key.

Most single characters constitute complete keys in the standard Emacs command bindings. A few of them are prefix keys. A prefix key combines with the following input event to make a longer key sequence, which may itself be complete or a prefix. For example, C-x is a prefix key, so C-x and the next input event combine to make a two-event key sequence. Most of these key sequences are complete keys, including C-x C-f and C-x b. A few, such as C-x 4 and C-x r, are themselves prefix keys that lead to three-event key sequences. There's no limit to the length of a key sequence, but in practice people rarely use sequences longer than four events.

By contrast, you can't add more events onto a complete key. For example, the two-event sequence C-f C-k is not a key, because the C-f is a complete key in itself. It's impossible to give C-f C-k an independent meaning as a command. C-f C-k is two key sequences, not one.

All told, the prefix keys in Emacs are C-c, C-h, C-x, C-x RET, C-x @, C-x a, C-x n, C-x r, C-x v, C-x 4, C-x 5, C-x 6, ESC, and M-g. But this list is not cast in concrete; it is just a matter of Emacs's standard key bindings. If you customize Emacs, you can make new prefix keys, or eliminate these. See section AD.4 Customizing Key Bindings.

If you do make or eliminate prefix keys, that changes the set of possible key sequences. For example, if you redefine C-f as a prefix, C-f C-k automatically becomes a key (complete, unless you define that too as a prefix). Conversely, if you remove the prefix definition of C-x 4, then C-x 4 f (or C-x 4 anything) is no longer a key.

Typing the help character (C-h or F1) after a prefix key displays a list of the commands starting with that prefix. There are a few prefix keys for which C-h does not work--for historical reasons, they have other meanings for C-h which are not easy to change. But F1 should work for all prefix keys.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.7 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does not assign meanings to keys directly. Instead, Emacs assigns meanings to named commands, and then gives keys their meanings by binding them to commands.

Every command has a name chosen by a programmer. The name is usually made of a few English words separated by dashes; for example, next-line or forward-word. A command also has a function definition which is a Lisp program; this is what makes the command do what it does. In Emacs Lisp, a command is actually a special kind of Lisp function; one which specifies how to read arguments for it and call it interactively. For more information on commands and functions, see section `What Is a Function' in The Emacs Lisp Reference Manual. (The definition we use in this manual is simplified slightly.)

The bindings between keys and commands are recorded in various tables called keymaps. See section AD.4.1 Keymaps.

When we say that "C-n moves down vertically one line" we are glossing over a distinction that is irrelevant in ordinary use but is vital in understanding how to customize Emacs. It is the command next-line that is programmed to move down vertically. C-n has this effect because it is bound to that command. If you rebind C-n to the command forward-word then C-n will move forward by words instead. Rebinding keys is a common method of customization.

In the rest of this manual, we usually ignore this subtlety to keep things simple. To give the information needed for customization, we state the name of the command which really does the work in parentheses after mentioning the key that runs it. For example, we will say that "The command C-n (next-line) moves point vertically down," meaning that next-line is a command that moves vertically down, and C-n is a key that is normally bound to it.

While we are on the subject of information for customization only, it's a good time to tell you about variables. Often the description of a command will say, "To change this, set the variable mumble-foo." A variable is a name used to remember a value. Most of the variables documented in this manual exist just to facilitate customization: some command or other part of Emacs examines the variable and behaves differently according to the value that you set. Until you are interested in customizing, you can ignore the information about variables. When you are ready to be interested, read the basic information on variables, and then the information on individual variables will make sense. See section AD.2 Variables.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

B.8 Character Set for Text

Text in Emacs buffers is a sequence of 8-bit bytes. Each byte can hold a single ASCII character. Both ASCII control characters (octal codes 000 through 037, and 0177) and ASCII printing characters (codes 040 through 0176) are allowed; however, non-ASCII control characters cannot appear in a buffer. The other modifier flags used in keyboard input, such as Meta, are not allowed in buffers either.

Some ASCII control characters serve special purposes in text, and have special names. For example, the newline character (octal code 012) is used in the buffer to end a line, and the tab character (octal code 011) is used for indenting to the next tab stop column (normally every 8 columns). See section J.11 How Text Is Displayed.

Non-ASCII printing characters can also appear in buffers. When multibyte characters are enabled, you can use any of the non-ASCII printing characters that Emacs supports. They have character codes starting at 256, octal 0400, and each one is represented as a sequence of two or more bytes. See section Q. International Character Set Support. Single-byte characters with codes 128 through 255 can also appear in multibyte buffers.

If you disable multibyte characters, then you can use only one alphabet of non-ASCII characters, but they all fit in one byte. They use codes 0200 through 0377. See section Q.13 Single-byte Character Set Support.


[ << ] [ >> ]           [Top] [Contents] [Index] [ ? ]

This document was generated on April 2, 2002 using texi2html