These scripts, while not fitting into the text of this document, do illustrate some interesting shell programming techniques. They are useful, too. Have fun analyzing and running them.
Example A-1. manview: Viewing formatted manpages
#!/bin/bash # manview.sh: Formats the source of a man page for viewing. # This is useful when writing man page source and you want to #+ look at the intermediate results on the fly while working on it. E_WRONGARGS=65 if [ -z "$1" ] then echo "Usage: `basename $0` filename" exit $E_WRONGARGS fi groff -Tascii -man $1 | less # From the man page for groff. # If the man page includes tables and/or equations, # then the above code will barf. # The following line can handle such cases. # # gtbl < "$1" | geqn -Tlatin1 | groff -Tlatin1 -mtty-char -man # # Thanks, S.C. exit 0 |
Example A-2. mailformat: Formatting an e-mail message
#!/bin/bash # mail-format.sh: Format e-mail messages. # Gets rid of carets, tabs, also fold excessively long lines. # ================================================================= # Standard Check for Script Argument(s) ARGS=1 E_BADARGS=65 E_NOFILE=66 if [ $# -ne $ARGS ] # Correct number of arguments passed to script? then echo "Usage: `basename $0` filename" exit $E_BADARGS fi if [ -f "$1" ] # Check if file exists. then file_name=$1 else echo "File \"$1\" does not exist." exit $E_NOFILE fi # ================================================================= MAXWIDTH=70 # Width to fold long lines to. # Delete carets and tabs at beginning of lines, #+ then fold lines to $MAXWIDTH characters. sed ' s/^>// s/^ *>// s/^ *// s/ *// ' $1 | fold -s --width=$MAXWIDTH # -s option to "fold" breaks lines at whitespace, if possible. # This script was inspired by an article in a well-known trade journal #+ extolling a 164K Windows utility with similar functionality. # # An nice set of text processing utilities and an efficient #+ scripting language provide an alternative to bloated executables. exit 0 |
Example A-3. rn: A simple-minded file rename utility
This script is a modification of Example 12-15.
#! /bin/bash # # Very simpleminded filename "rename" utility (based on "lowercase.sh"). # # The "ren" utility, by Vladimir Lanin ([email protected]), #+ does a much better job of this. ARGS=2 E_BADARGS=65 ONE=1 # For getting singular/plural right (see below). if [ $# -ne "$ARGS" ] then echo "Usage: `basename $0` old-pattern new-pattern" # As in "rn gif jpg", which renames all gif files in working directory to jpg. exit $E_BADARGS fi number=0 # Keeps track of how many files actually renamed. for filename in *$1* #Traverse all matching files in directory. do if [ -f "$filename" ] # If finds match... then fname=`basename $filename` # Strip off path. n=`echo $fname | sed -e "s/$1/$2/"` # Substitute new for old in filename. mv $fname $n # Rename. let "number += 1" fi done if [ "$number" -eq "$ONE" ] # For correct grammar. then echo "$number file renamed." else echo "$number files renamed." fi exit 0 # Exercises: # --------- # What type of files will this not work on? # How can this be fixed? # # Rewrite this script to process all the files in a directory #+ containing spaces in their names, and to rename them, #+ substituting an underscore for each space. |
Example A-4. blank-rename: renames filenames containing blanks
This is an even simpler-minded version of previous script.
#! /bin/bash # blank-rename.sh # # Substitutes underscores for blanks in all the filenames in a directory. ONE=1 # For getting singular/plural right (see below). number=0 # Keeps track of how many files actually renamed. FOUND=0 # Successful return value. for filename in * #Traverse all files in directory. do echo "$filename" | grep -q " " # Check whether filename if [ $? -eq $FOUND ] #+ contains space(s). then fname=$filename # Strip off path. n=`echo $fname | sed -e "s/ /_/g"` # Substitute underscore for blank. mv "$fname" "$n" # Do the actual renaming. let "number += 1" fi done if [ "$number" -eq "$ONE" ] # For correct grammar. then echo "$number file renamed." else echo "$number files renamed." fi exit 0 |
Example A-5. encryptedpw: Uploading to an ftp site, using a locally encrypted password
#!/bin/bash # Example "ex72.sh" modified to use encrypted password. # Note that this is still somewhat insecure, #+ since the decrypted password is sent in the clear. # Use something like "ssh" if this is a concern. E_BADARGS=65 if [ -z "$1" ] then echo "Usage: `basename $0` filename" exit $E_BADARGS fi Username=bozo # Change to suit. pword=/home/bozo/secret/password_encrypted.file # File containing encrypted password. Filename=`basename $1` # Strips pathname out of file name Server="XXX" Directory="YYY" # Change above to actual server name & directory. Password=`cruft <$pword` # Decrypt password. # Uses the author's own "cruft" file encryption package, #+ based on the classic "onetime pad" algorithm, #+ and obtainable from: #+ Primary-site: ftp://metalab.unc.edu /pub/Linux/utils/file #+ cruft-0.2.tar.gz [16k] ftp -n $Server <<End-Of-Session user $Username $Password binary bell cd $Directory put $Filename bye End-Of-Session # -n option to "ftp" disables auto-logon. # "bell" rings 'bell' after each file transfer. exit 0 |
Example A-6. copy-cd: Copying a data CD
#!/bin/bash # copy-cd.sh: copying a data CD CDROM=/dev/cdrom # CD ROM device OF=/home/bozo/projects/cdimage.iso # output file # /xxxx/xxxxxxx/ Change to suit your system. BLOCKSIZE=2048 SPEED=2 # May use higher speed if supported. echo; echo "Insert source CD, but do *not* mount it." echo "Press ENTER when ready. " read ready # Wait for input, $ready not used. echo; echo "Copying the source CD to $OF." echo "This may take a while. Please be patient." dd if=$CDROM of=$OF bs=$BLOCKSIZE # Raw device copy. echo; echo "Remove data CD." echo "Insert blank CDR." echo "Press ENTER when ready. " read ready # Wait for input, $ready not used. echo "Copying $OF to CDR." cdrecord -v -isosize speed=$SPEED dev=0,0 $OF # Uses Joerg Schilling's "cdrecord" package (see its docs). # http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html echo; echo "Done copying $OF to CDR on device $CDROM." echo "Do you want to erase the image file (y/n)? " # Probably a huge file. read answer case "$answer" in [yY]) rm -f $OF echo "$OF erased." ;; *) echo "$OF not erased.";; esac echo # Exercise: # Change the above "case" statement to also accept "yes" and "Yes" as input. exit 0 |
Example A-7. Collatz series
#!/bin/bash # collatz.sh # The notorious "hailstone" or Collatz series. # ------------------------------------------- # 1) Get the integer "seed" from the command line. # 2) NUMBER <--- seed # 3) Print NUMBER. # 4) If NUMBER is even, divide by 2, or # 5)+ if odd, multiply by 3 and add 1. # 6) NUMBER <--- result # 7) Loop back to step 3 (for specified number of iterations). # # The theory is that every sequence, #+ no matter how large the initial value, #+ eventually settles down to repeating "4,2,1..." cycles, #+ even after fluctuating through a wide range of values. # # This is an instance of an "iterate", #+ an operation that feeds its output back into the input. # Sometimes the result is a "chaotic" series. MAX_ITERATIONS=200 # For large seed numbers (>32000), increase MAX_ITERATIONS. h=${1:-$$} # Seed # Use $PID as seed, #+ if not specified as command-line arg. echo echo "C($h) --- $MAX_ITERATIONS Iterations" echo for ((i=1; i<=MAX_ITERATIONS; i++)) do echo -n "$h " # ^^^^^ # tab let "remainder = h % 2" if [ "$remainder" -eq 0 ] # Even? then let "h /= 2" # Divide by 2. else let "h = h*3 + 1" # Multiply by 3 and add 1. fi COLUMNS=10 # Output 10 values per line. let "line_break = i % $COLUMNS" if [ "$line_break" -eq 0 ] then echo fi done echo # For more information on this mathematical function, #+ see "Computers, Pattern, Chaos, and Beauty", by Pickover, p. 185 ff., #+ as listed in the bibliography. exit 0 |
Example A-8. days-between: Calculate number of days between two dates
#!/bin/bash # days-between.sh: Number of days between two dates. # Usage: ./days-between.sh [M]M/[D]D/YYYY [M]M/[D]D/YYYY ARGS=2 # Two command line parameters expected. E_PARAM_ERR=65 # Param error. REFYR=1600 # Reference year. CENTURY=100 DIY=365 ADJ_DIY=367 # Adjusted for leap year + fraction. MIY=12 DIM=31 LEAPCYCLE=4 MAXRETVAL=256 # Largest permissable # positive return value from a function. diff= # Declare global variable for date difference. value= # Declare global variable for absolute value. day= # Declare globals for day, month, year. month= year= Param_Error () # Command line parameters wrong. { echo "Usage: `basename $0` [M]M/[D]D/YYYY [M]M/[D]D/YYYY" echo " (date must be after 1/3/1600)" exit $E_PARAM_ERR } Parse_Date () # Parse date from command line params. { month=${1%%/**} dm=${1%/**} # Day and month. day=${dm#*/} let "year = `basename $1`" # Not a filename, but works just the same. } check_date () # Checks for invalid date(s) passed. { [ "$day" -gt "$DIM" ] || [ "$month" -gt "$MIY" ] || [ "$year" -lt "$REFYR" ] && Param_Error # Exit script on bad value(s). # Uses "or-list / and-list". # # Exercise: Implement more rigorous date checking. } strip_leading_zero () # Better to strip possible leading zero(s) { # from day and/or month val=${1#0} # since otherwise Bash will interpret them return $val # as octal values (POSIX.2, sect 2.9.2.1). } day_index () # Gauss' Formula: { # Days from Jan. 3, 1600 to date passed as param. day=$1 month=$2 year=$3 let "month = $month - 2" if [ "$month" -le 0 ] then let "month += 12" let "year -= 1" fi let "year -= $REFYR" let "indexyr = $year / $CENTURY" let "Days = $DIY*$year + $year/$LEAPCYCLE - $indexyr + $indexyr/$LEAPCYCLE + $ADJ_DIY*$month/$MIY + $day - $DIM" # For an in-depth explanation of this algorithm, see # http://home.t-online.de/home/berndt.schwerdtfeger/cal.htm if [ "$Days" -gt "$MAXRETVAL" ] # If greater than 256, then # then change to negative value let "dindex = 0 - $Days" # which can be returned from function. else let "dindex = $Days" fi return $dindex } calculate_difference () # Difference between to day indices. { let "diff = $1 - $2" # Global variable. } abs () # Absolute value { # Uses global "value" variable. if [ "$1" -lt 0 ] # If negative then # then let "value = 0 - $1" # change sign, else # else let "value = $1" # leave it alone. fi } if [ $# -ne "$ARGS" ] # Require two command line params. then Param_Error fi Parse_Date $1 check_date $day $month $year # See if valid date. strip_leading_zero $day # Remove any leading zeroes day=$? # on day and/or month. strip_leading_zero $month month=$? day_index $day $month $year date1=$? abs $date1 # Make sure it's positive date1=$value # by getting absolute value. Parse_Date $2 check_date $day $month $year strip_leading_zero $day day=$? strip_leading_zero $month month=$? day_index $day $month $year date2=$? abs $date2 # Make sure it's positive. date2=$value calculate_difference $date1 $date2 abs $diff # Make sure it's positive. diff=$value echo $diff exit 0 # Compare this script with the implementation of Gauss' Formula in C at # http://buschencrew.hypermart.net/software/datedif |
Example A-9. Make a "dictionary"
#!/bin/bash # makedict.sh [make dictionary] # Modification of /usr/sbin/mkdict script. # Original script copyright 1993, by Alec Muffett. # # This modified script included in this document in a manner #+ consistent with the "LICENSE" document of the "Crack" package #+ that the original script is a part of. # This script processes text files to produce a sorted list #+ of words found in the files. # This may be useful for compiling dictionaries #+ and for lexicographic research. E_BADARGS=65 if [ ! -r "$1" ] # Need at least one then #+ valid file argument. echo "Usage: $0 files-to-process" exit $E_BADARGS fi # SORT="sort" # No longer necessary to define options #+ to sort. Changed from original script. cat $* | # Contents of specified files to stdout. tr A-Z a-z | # Convert to lowercase. tr ' ' '\012' | # New: change spaces to newlines. # tr -cd '\012[a-z][0-9]' | # Get rid of everything non-alphanumeric #+ (original script). tr -c '\012a-z' '\012' | # Rather than deleting #+ now change non-alpha to newlines. sort | # $SORT options unnecessary now. uniq | # Remove duplicates. grep -v '^#' | # Delete lines beginning with a hashmark. grep -v '^$' # Delete blank lines. exit 0 |
Example A-10. Soundex conversion
#!/bin/bash # soundex.sh: Calculate "soundex" code for names # ======================================================= # Soundex script # by # Mendel Cooper # [email protected] # 23 January, 2002 # # Placed in the Public Domain. # # A slightly different version of this script appeared in #+ Ed Schaefer's July, 2002 "Shell Corner" column #+ in "Unix Review" on-line, #+ http://www.unixreview.com/documents/uni1026336632258/ # ======================================================= ARGCOUNT=1 # Need name as argument. E_WRONGARGS=70 if [ $# -ne "$ARGCOUNT" ] then echo "Usage: `basename $0` name" exit $E_WRONGARGS fi assign_value () # Assigns numerical value { #+ to letters of name. val1=bfpv # 'b,f,p,v' = 1 val2=cgjkqsxz # 'c,g,j,k,q,s,x,z' = 2 val3=dt # etc. val4=l val5=mn val6=r # Exceptionally clever use of 'tr' follows. # Try to figure out what is going on here. value=$( echo "$1" \ | tr -d wh \ | tr $val1 1 | tr $val2 2 | tr $val3 3 \ | tr $val4 4 | tr $val5 5 | tr $val6 6 \ | tr -s 123456 \ | tr -d aeiouy ) # Assign letter values. # Remove duplicate numbers, except when separated by vowels. # Ignore vowels, except as separators, so delete them last. # Ignore 'w' and 'h', even as separators, so delete them first. # # The above command substitution lays more pipe than a plumber <g>. } input_name="$1" echo echo "Name = $input_name" # Change all characters of name input to lowercase. # ------------------------------------------------ name=$( echo $input_name | tr A-Z a-z ) # ------------------------------------------------ # Just in case argument to script is mixed case. # Prefix of soundex code: first letter of name. # -------------------------------------------- char_pos=0 # Initialize character position. prefix0=${name:$char_pos:1} prefix=`echo $prefix0 | tr a-z A-Z` # Uppercase 1st letter of soundex. let "char_pos += 1" # Bump character position to 2nd letter of name. name1=${name:$char_pos} # ++++++++++++++++++++++++++ Exception Patch +++++++++++++++++++++++++++++++++ # Now, we run both the input name and the name shifted one char to the right #+ through the value-assigning function. # If we get the same value out, that means that the first two characters #+ of the name have the same value assigned, and that one should cancel. # However, we also need to test whether the first letter of the name #+ is a vowel or 'w' or 'h', because otherwise this would bollix things up. char1=`echo $prefix | tr A-Z a-z` # First letter of name, lowercased. assign_value $name s1=$value assign_value $name1 s2=$value assign_value $char1 s3=$value s3=9$s3 # If first letter of name is a vowel #+ or 'w' or 'h', #+ then its "value" will be null (unset). #+ Therefore, set it to 9, an otherwise #+ unused value, which can be tested for. if [[ "$s1" -ne "$s2" || "$s3" -eq 9 ]] then suffix=$s2 else suffix=${s2:$char_pos} fi # ++++++++++++++++++++++ end Exception Patch +++++++++++++++++++++++++++++++++ padding=000 # Use at most 3 zeroes to pad. soun=$prefix$suffix$padding # Pad with zeroes. MAXLEN=4 # Truncate to maximum of 4 chars. soundex=${soun:0:$MAXLEN} echo "Soundex = $soundex" echo # The soundex code is a method of indexing and classifying names #+ by grouping together the ones that sound alike. # The soundex code for a given name is the first letter of the name, #+ followed by a calculated three-number code. # Similar sounding names should have almost the same soundex codes. # Examples: # Smith and Smythe both have a "S-530" soundex. # Harrison = H-625 # Hargison = H-622 # Harriman = H-655 # This works out fairly well in practice, but there are numerous anomalies. # # # The U.S. Census and certain other governmental agencies use soundex, # as do genealogical researchers. # # For more information, #+ see the "National Archives and Records Administration home page", #+ http://www.nara.gov/genealogy/soundex/soundex.html # Exercise: # -------- # Simplify the "Exception Patch" section of this script. exit 0 |
Example A-11. "Game of Life"
#!/bin/bash # life.sh: "Life in the Slow Lane" # ##################################################################### # # This is the Bash script version of John Conway's "Game of Life". # # "Life" is a simple implementation of cellular automata. # # --------------------------------------------------------------------- # # On a rectangular grid, let each "cell" be either "living" or "dead". # # Designate a living cell with a dot, and a dead one with a blank space.# # Begin with an arbitrarily drawn dot-and-blank grid, # #+ and let this be the starting generation, "generation 0". # # Determine each successive generation by the following rules: # # 1) Each cell has 8 neighbors, the adjoining cells # #+ left, right, top, bottom, and the 4 diagonals. # # 123 # # 4*5 # # 678 # # # # 2) A living cell with either 2 or 3 living neighbors remains alive. # # 3) A dead cell with 3 living neighbors becomes alive (a "birth"). # SURVIVE=2 # BIRTH=3 # # 4) All other cases result in dead cells. # # ##################################################################### # startfile=gen0 # Read the starting generation from the file "gen0". # Default, if no other file specified when invoking script. # if [ -n "$1" ] # Specify another "generation 0" file. then if [ -e "$1" ] # Check for existence. then startfile="$1" fi fi ALIVE1=. DEAD1=_ # Represent living and "dead" cells in the start-up file. # This script uses a 10 x 10 grid (may be increased, #+ but a large grid will will cause very slow execution). ROWS=10 COLS=10 GENERATIONS=10 # How many generations to cycle through. # Adjust this upwards, #+ if you have time on your hands. NONE_ALIVE=80 # Exit status on premature bailout, #+ if no cells left alive. TRUE=0 FALSE=1 ALIVE=0 DEAD=1 avar= # Global; holds current generation. generation=0 # Initialize generation count. # ================================================================= let "cells = $ROWS * $COLS" # How many cells. declare -a initial # Arrays containing "cells". declare -a current display () { alive=0 # How many cells "alive". # Initially zero. declare -a arr arr=( `echo "$1"` ) # Convert passed arg to array. element_count=${#arr[*]} local i local rowcheck for ((i=0; i<$element_count; i++)) do # Insert newline at end of each row. let "rowcheck = $i % ROWS" if [ "$rowcheck" -eq 0 ] then echo # Newline. echo -n " " # Indent. fi cell=${arr[i]} if [ "$cell" = . ] then let "alive += 1" fi echo -n "$cell" | sed -e 's/_/ /g' # Print out array and change underscores to spaces. done return } IsValid () # Test whether cell coordinate valid. { if [ -z "$1" -o -z "$2" ] # Mandatory arguments missing? then return $FALSE fi local row local lower_limit=0 # Disallow negative coordinate. local upper_limit local left local right let "upper_limit = $ROWS * $COLS - 1" # Total number of cells. if [ "$1" -lt "$lower_limit" -o "$1" -gt "$upper_limit" ] then return $FALSE # Out of array bounds. fi row=$2 let "left = $row * $ROWS" # Left limit. let "right = $left + $COLS - 1" # Right limit. if [ "$1" -lt "$left" -o "$1" -gt "$right" ] then return $FALSE # Beyond row boundary. fi return $TRUE # Valid coordinate. } IsAlive () # Test whether cell is alive. # Takes array, cell number, state of cell as arguments. { GetCount "$1" $2 # Get alive cell count in neighborhood. local nhbd=$? if [ "$nhbd" -eq "$BIRTH" ] # Alive in any case. then return $ALIVE fi if [ "$3" = "." -a "$nhbd" -eq "$SURVIVE" ] then # Alive only if previously alive. return $ALIVE fi return $DEAD # Default. } GetCount () # Count live cells in passed cell's neighborhood. # Two arguments needed: # $1) variable holding array # $2) cell number { local cell_number=$2 local array local top local center local bottom local r local row local i local t_top local t_cen local t_bot local count=0 local ROW_NHBD=3 array=( `echo "$1"` ) let "top = $cell_number - $COLS - 1" # Set up cell neighborhood. let "center = $cell_number - 1" let "bottom = $cell_number + $COLS - 1" let "r = $cell_number / $ROWS" for ((i=0; i<$ROW_NHBD; i++)) # Traverse from left to right. do let "t_top = $top + $i" let "t_cen = $center + $i" let "t_bot = $bottom + $i" let "row = $r" # Count center row of neighborhood. IsValid $t_cen $row # Valid cell position? if [ $? -eq "$TRUE" ] then if [ ${array[$t_cen]} = "$ALIVE1" ] # Is it alive? then # Yes? let "count += 1" # Increment count. fi fi let "row = $r - 1" # Count top row. IsValid $t_top $row if [ $? -eq "$TRUE" ] then if [ ${array[$t_top]} = "$ALIVE1" ] then let "count += 1" fi fi let "row = $r + 1" # Count bottom row. IsValid $t_bot $row if [ $? -eq "$TRUE" ] then if [ ${array[$t_bot]} = "$ALIVE1" ] then let "count += 1" fi fi done if [ ${array[$cell_number]} = "$ALIVE1" ] then let "count -= 1" # Make sure value of tested cell itself fi #+ is not counted. return $count } next_gen () # Update generation array. { local array local i=0 array=( `echo "$1"` ) # Convert passed arg to array. while [ "$i" -lt "$cells" ] do IsAlive "$1" $i ${array[$i]} # Is cell alive? if [ $? -eq "$ALIVE" ] then # If alive, then array[$i]=. #+ represent the cell as a period. else array[$i]="_" # Otherwise underscore fi #+ (which will later be converted to space). let "i += 1" done # let "generation += 1" # Increment generation count. # Set variable to pass as parameter to "display" function. avar=`echo ${array[@]}` # Convert array back to string variable. display "$avar" # Display it. echo; echo echo "Generation $generation -- $alive alive" if [ "$alive" -eq 0 ] then echo echo "Premature exit: no more cells alive!" exit $NONE_ALIVE # No point in continuing fi #+ if no live cells. } # ========================================================= # main () # Load initial array with contents of startup file. initial=( `cat "$startfile" | sed -e '/#/d' | tr -d '\n' |\ sed -e 's/\./\. /g' -e 's/_/_ /g'` ) # Delete lines containing '#' comment character. # Remove linefeeds and insert space between elements. clear # Clear screen. echo # Title echo "=======================" echo " $GENERATIONS generations" echo " of" echo "\"Life in the Slow Lane\"" echo "=======================" # -------- Display first generation. -------- Gen0=`echo ${initial[@]}` display "$Gen0" # Display only. echo; echo echo "Generation $generation -- $alive alive" # ------------------------------------------- let "generation += 1" # Increment generation count. echo # ------- Display second generation. ------- Cur=`echo ${initial[@]}` next_gen "$Cur" # Update & display. # ------------------------------------------ let "generation += 1" # Increment generation count. # ------ Main loop for displaying subsequent generations ------ while [ "$generation" -le "$GENERATIONS" ] do Cur="$avar" next_gen "$Cur" let "generation += 1" done # ============================================================== echo exit 0 # -------------------------------------------------------------- # The grid in this script has a "boundary problem". # The the top, bottom, and sides border on a void of dead cells. # Exercise: Change the script to have the grid wrap around, # + so that the left and right sides will "touch", # + as will the top and bottom. |
Example A-12. Data file for "Game of Life"
# This is an example "generation 0" start-up file for "life.sh". # -------------------------------------------------------------- # The "gen0" file is a 10 x 10 grid using a period (.) for live cells, #+ and an underscore (_) for dead ones. We cannot simply use spaces #+ for dead cells in this file because of a peculiarity in Bash arrays. # [Exercise for the reader: explain this.] # # Lines beginning with a '#' are comments, and the script ignores them. __.__..___ ___._.____ ____.___.. _._______. ____._____ ..__...___ ____._____ ___...____ __.._..___ _..___..__ |
+++
The following two scripts are by Mark Moraes of the University of Toronto. See the enclosed file "Moraes-COPYRIGHT" for permissions and restrictions.
Example A-13. behead: Removing mail and news message headers
#! /bin/sh # Strips off the header from a mail/News message i.e. till the first # empty line # Mark Moraes, University of Toronto # ==> These comments added by author of this document. if [ $# -eq 0 ]; then # ==> If no command line args present, then works on file redirected to stdin. sed -e '1,/^$/d' -e '/^[ ]*$/d' # --> Delete empty lines and all lines until # --> first one beginning with white space. else # ==> If command line args present, then work on files named. for i do sed -e '1,/^$/d' -e '/^[ ]*$/d' $i # --> Ditto, as above. done fi # ==> Exercise: Add error checking and other options. # ==> # ==> Note that the small sed script repeats, except for the arg passed. # ==> Does it make sense to embed it in a function? Why or why not? |
Example A-14. ftpget: Downloading files via ftp
#! /bin/sh # $Id: ftpget,v 1.2 91/05/07 21:15:43 moraes Exp $ # Script to perform batch anonymous ftp. Essentially converts a list of # of command line arguments into input to ftp. # Simple, and quick - written as a companion to ftplist # -h specifies the remote host (default prep.ai.mit.edu) # -d specifies the remote directory to cd to - you can provide a sequence # of -d options - they will be cd'ed to in turn. If the paths are relative, # make sure you get the sequence right. Be careful with relative paths - # there are far too many symlinks nowadays. # (default is the ftp login directory) # -v turns on the verbose option of ftp, and shows all responses from the # ftp server. # -f remotefile[:localfile] gets the remote file into localfile # -m pattern does an mget with the specified pattern. Remember to quote # shell characters. # -c does a local cd to the specified directory # For example, # ftpget -h expo.lcs.mit.edu -d contrib -f xplaces.shar:xplaces.sh \ # -d ../pub/R3/fixes -c ~/fixes -m 'fix*' # will get xplaces.shar from ~ftp/contrib on expo.lcs.mit.edu, and put it in # xplaces.sh in the current working directory, and get all fixes from # ~ftp/pub/R3/fixes and put them in the ~/fixes directory. # Obviously, the sequence of the options is important, since the equivalent # commands are executed by ftp in corresponding order # # Mark Moraes ([email protected]), Feb 1, 1989 # ==> Angle brackets changed to parens, so Docbook won't get indigestion. # # ==> These comments added by author of this document. # PATH=/local/bin:/usr/ucb:/usr/bin:/bin # export PATH # ==> Above 2 lines from original script probably superfluous. TMPFILE=/tmp/ftp.$$ # ==> Creates temp file, using process id of script ($$) # ==> to construct filename. SITE=`domainname`.toronto.edu # ==> 'domainname' similar to 'hostname' # ==> May rewrite this to parameterize this for general use. usage="Usage: $0 [-h remotehost] [-d remotedirectory]... [-f remfile:localfile]... \ [-c localdirectory] [-m filepattern] [-v]" ftpflags="-i -n" verbflag= set -f # So we can use globbing in -m set x `getopt vh:d:c:m:f: $*` if [ $? != 0 ]; then echo $usage exit 65 fi shift trap 'rm -f ${TMPFILE} ; exit' 0 1 2 3 15 echo "user anonymous ${USER-gnu}@${SITE} > ${TMPFILE}" # ==> Added quotes (recommended in complex echoes). echo binary >> ${TMPFILE} for i in $* # ==> Parse command line args. do case $i in -v) verbflag=-v; echo hash >> ${TMPFILE}; shift;; -h) remhost=$2; shift 2;; -d) echo cd $2 >> ${TMPFILE}; if [ x${verbflag} != x ]; then echo pwd >> ${TMPFILE}; fi; shift 2;; -c) echo lcd $2 >> ${TMPFILE}; shift 2;; -m) echo mget "$2" >> ${TMPFILE}; shift 2;; -f) f1=`expr "$2" : "\([^:]*\).*"`; f2=`expr "$2" : "[^:]*:\(.*\)"`; echo get ${f1} ${f2} >> ${TMPFILE}; shift 2;; --) shift; break;; esac done if [ $# -ne 0 ]; then echo $usage exit 65 # ==> Changed from "exit 2" to conform with standard. fi if [ x${verbflag} != x ]; then ftpflags="${ftpflags} -v" fi if [ x${remhost} = x ]; then remhost=prep.ai.mit.edu # ==> Rewrite to match your favorite ftp site. fi echo quit >> ${TMPFILE} # ==> All commands saved in tempfile. ftp ${ftpflags} ${remhost} < ${TMPFILE} # ==> Now, tempfile batch processed by ftp. rm -f ${TMPFILE} # ==> Finally, tempfile deleted (you may wish to copy it to a logfile). # ==> Exercises: # ==> --------- # ==> 1) Add error checking. # ==> 2) Add bells & whistles. |
+
Antek Sawicki contributed the following script, which makes very clever use of the parameter substitution operators discussed in Section 9.3.
Example A-15. password: Generating random 8-character passwords
#!/bin/bash # May need to be invoked with #!/bin/bash2 on older machines. # # Random password generator for bash 2.x by Antek Sawicki <[email protected]>, # who generously gave permission to the document author to use it here. # # ==> Comments added by document author ==> MATRIX="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" LENGTH="8" # ==> May change 'LENGTH' for longer password, of course. while [ "${n:=1}" -le "$LENGTH" ] # ==> Recall that := is "default substitution" operator. # ==> So, if 'n' has not been initialized, set it to 1. do PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}" # ==> Very clever, but tricky. # ==> Starting from the innermost nesting... # ==> ${#MATRIX} returns length of array MATRIX. # ==> $RANDOM%${#MATRIX} returns random number between 1 # ==> and length of MATRIX - 1. # ==> ${MATRIX:$(($RANDOM%${#MATRIX})):1} # ==> returns expansion of MATRIX at random position, by length 1. # ==> See {var:pos:len} parameter substitution in Section 3.3.1 # ==> and following examples. # ==> PASS=... simply pastes this result onto previous PASS (concatenation). # ==> To visualize this more clearly, uncomment the following line # ==> echo "$PASS" # ==> to see PASS being built up, # ==> one character at a time, each iteration of the loop. let n+=1 # ==> Increment 'n' for next pass. done echo "$PASS" # ==> Or, redirect to file, as desired. exit 0 |
+
James R. Van Zandt contributed this script, which uses named pipes and, in his words, "really exercises quoting and escaping".
Example A-16. fifo: Making daily backups, using named pipes
#!/bin/bash # ==> Script by James R. Van Zandt, and used here with his permission. # ==> Comments added by author of this document. HERE=`uname -n` # ==> hostname THERE=bilbo echo "starting remote backup to $THERE at `date +%r`" # ==> `date +%r` returns time in 12-hour format, i.e. "08:08:34 PM". # make sure /pipe really is a pipe and not a plain file rm -rf /pipe mkfifo /pipe # ==> Create a "named pipe", named "/pipe". # ==> 'su xyz' runs commands as user "xyz". # ==> 'ssh' invokes secure shell (remote login client). su xyz -c "ssh $THERE \"cat >/home/xyz/backup/${HERE}-daily.tar.gz\" < /pipe"& cd / tar -czf - bin boot dev etc home info lib man root sbin share usr var >/pipe # ==> Uses named pipe, /pipe, to communicate between processes: # ==> 'tar/gzip' writes to /pipe and 'ssh' reads from /pipe. # ==> The end result is this backs up the main directories, from / on down. # ==> What are the advantages of a "named pipe" in this situation, # ==> as opposed to an "anonymous pipe", with |? # ==> Will an anonymous pipe even work here? exit 0 |
+
Stephane Chazelas contributed the following script to demonstrate that generating prime numbers does not require arrays.
Example A-17. Generating prime numbers using the modulo operator
#!/bin/bash # primes.sh: Generate prime numbers, without using arrays. # Script contributed by Stephane Chazelas. # This does *not* use the classic "Sieve of Eratosthenes" algorithm, #+ but instead uses the more intuitive method of testing each candidate number #+ for factors (divisors), using the "%" modulo operator. LIMIT=1000 # Primes 2 - 1000 Primes() { (( n = $1 + 1 )) # Bump to next integer. shift # Next parameter in list. # echo "_n=$n i=$i_" if (( n == LIMIT )) then echo $* return fi for i; do # "i" gets set to "@", previous values of $n. # echo "-n=$n i=$i-" (( i * i > n )) && break # Optimization. (( n % i )) && continue # Sift out non-primes using modulo operator. Primes $n $@ # Recursion inside loop. return done Primes $n $@ $n # Recursion outside loop. # Successively accumulate positional parameters. # "$@" is the accumulating list of primes. } Primes 1 exit 0 # Uncomment lines 17 and 25 to help figure out what is going on. # Compare the speed of this algorithm for generating primes # with the Sieve of Eratosthenes (ex68.sh). # Exercise: Rewrite this script without recursion, for faster execution. |
+
Jordi Sanfeliu gave permission to use his elegant tree script.
Example A-18. tree: Displaying a directory tree
#!/bin/sh # @(#) tree 1.1 30/11/95 by Jordi Sanfeliu # email: [email protected] # # Initial version: 1.0 30/11/95 # Next version : 1.1 24/02/97 Now, with symbolic links # Patch by : Ian Kjos, to support unsearchable dirs # email: [email protected] # # Tree is a tool for view the directory tree (obvious :-) ) # # ==> 'Tree' script used here with the permission of its author, Jordi Sanfeliu. # ==> Comments added by the author of this document. # ==> Argument quoting added. search () { for dir in `echo *` # ==> `echo *` lists all the files in current working directory, without line breaks. # ==> Similar effect to for dir in * # ==> but "dir in `echo *`" will not handle filenames with blanks. do if [ -d "$dir" ] ; then # ==> If it is a directory (-d)... zz=0 # ==> Temp variable, keeping track of directory level. while [ $zz != $deep ] # Keep track of inner nested loop. do echo -n "| " # ==> Display vertical connector symbol, # ==> with 2 spaces & no line feed in order to indent. zz=`expr $zz + 1` # ==> Increment zz. done if [ -L "$dir" ] ; then # ==> If directory is a symbolic link... echo "+---$dir" `ls -l $dir | sed 's/^.*'$dir' //'` # ==> Display horiz. connector and list directory name, but... # ==> delete date/time part of long listing. else echo "+---$dir" # ==> Display horizontal connector symbol... # ==> and print directory name. if cd "$dir" ; then # ==> If can move to subdirectory... deep=`expr $deep + 1` # ==> Increment depth. search # with recursivity ;-) # ==> Function calls itself. numdirs=`expr $numdirs + 1` # ==> Increment directory count. fi fi fi done cd .. # ==> Up one directory level. if [ "$deep" ] ; then # ==> If depth = 0 (returns TRUE)... swfi=1 # ==> set flag showing that search is done. fi deep=`expr $deep - 1` # ==> Decrement depth. } # - Main - if [ $# = 0 ] ; then cd `pwd` # ==> No args to script, then use current working directory. else cd $1 # ==> Otherwise, move to indicated directory. fi echo "Initial directory = `pwd`" swfi=0 # ==> Search finished flag. deep=0 # ==> Depth of listing. numdirs=0 zz=0 while [ "$swfi" != 1 ] # While flag not set... do search # ==> Call function after initializing variables. done echo "Total directories = $numdirs" exit 0 # ==> Challenge: try to figure out exactly how this script works. |
Noah Friedman gave permission to use his string function script, which essentially reproduces some of the C-library string manipulation functions.
Example A-19. string functions: C-like string functions
#!/bin/bash # string.bash --- bash emulation of string(3) library routines # Author: Noah Friedman <[email protected]> # ==> Used with his kind permission in this document. # Created: 1992-07-01 # Last modified: 1993-09-29 # Public domain # Conversion to bash v2 syntax done by Chet Ramey # Commentary: # Code: #:docstring strcat: # Usage: strcat s1 s2 # # Strcat appends the value of variable s2 to variable s1. # # Example: # a="foo" # b="bar" # strcat a b # echo $a # => foobar # #:end docstring: ###;;;autoload ==> Autoloading of function commented out. function strcat () { local s1_val s2_val s1_val=${!1} # indirect variable expansion s2_val=${!2} eval "$1"=\'"${s1_val}${s2_val}"\' # ==> eval $1='${s1_val}${s2_val}' avoids problems, # ==> if one of the variables contains a single quote. } #:docstring strncat: # Usage: strncat s1 s2 $n # # Line strcat, but strncat appends a maximum of n characters from the value # of variable s2. It copies fewer if the value of variabl s2 is shorter # than n characters. Echoes result on stdout. # # Example: # a=foo # b=barbaz # strncat a b 3 # echo $a # => foobar # #:end docstring: ###;;;autoload function strncat () { local s1="$1" local s2="$2" local -i n="$3" local s1_val s2_val s1_val=${!s1} # ==> indirect variable expansion s2_val=${!s2} if [ ${#s2_val} -gt ${n} ]; then s2_val=${s2_val:0:$n} # ==> substring extraction fi eval "$s1"=\'"${s1_val}${s2_val}"\' # ==> eval $1='${s1_val}${s2_val}' avoids problems, # ==> if one of the variables contains a single quote. } #:docstring strcmp: # Usage: strcmp $s1 $s2 # # Strcmp compares its arguments and returns an integer less than, equal to, # or greater than zero, depending on whether string s1 is lexicographically # less than, equal to, or greater than string s2. #:end docstring: ###;;;autoload function strcmp () { [ "$1" = "$2" ] && return 0 [ "${1}" '<' "${2}" ] > /dev/null && return -1 return 1 } #:docstring strncmp: # Usage: strncmp $s1 $s2 $n # # Like strcmp, but makes the comparison by examining a maximum of n # characters (n less than or equal to zero yields equality). #:end docstring: ###;;;autoload function strncmp () { if [ -z "${3}" -o "${3}" -le "0" ]; then return 0 fi if [ ${3} -ge ${#1} -a ${3} -ge ${#2} ]; then strcmp "$1" "$2" return $? else s1=${1:0:$3} s2=${2:0:$3} strcmp $s1 $s2 return $? fi } #:docstring strlen: # Usage: strlen s # # Strlen returns the number of characters in string literal s. #:end docstring: ###;;;autoload function strlen () { eval echo "\${#${1}}" # ==> Returns the length of the value of the variable # ==> whose name is passed as an argument. } #:docstring strspn: # Usage: strspn $s1 $s2 # # Strspn returns the length of the maximum initial segment of string s1, # which consists entirely of characters from string s2. #:end docstring: ###;;;autoload function strspn () { # Unsetting IFS allows whitespace to be handled as normal chars. local IFS= local result="${1%%[!${2}]*}" echo ${#result} } #:docstring strcspn: # Usage: strcspn $s1 $s2 # # Strcspn returns the length of the maximum initial segment of string s1, # which consists entirely of characters not from string s2. #:end docstring: ###;;;autoload function strcspn () { # Unsetting IFS allows whitspace to be handled as normal chars. local IFS= local result="${1%%[${2}]*}" echo ${#result} } #:docstring strstr: # Usage: strstr s1 s2 # # Strstr echoes a substring starting at the first occurrence of string s2 in # string s1, or nothing if s2 does not occur in the string. If s2 points to # a string of zero length, strstr echoes s1. #:end docstring: ###;;;autoload function strstr () { # if s2 points to a string of zero length, strstr echoes s1 [ ${#2} -eq 0 ] && { echo "$1" ; return 0; } # strstr echoes nothing if s2 does not occur in s1 case "$1" in *$2*) ;; *) return 1;; esac # use the pattern matching code to strip off the match and everything # following it first=${1/$2*/} # then strip off the first unmatched portion of the string echo "${1##$first}" } #:docstring strtok: # Usage: strtok s1 s2 # # Strtok considers the string s1 to consist of a sequence of zero or more # text tokens separated by spans of one or more characters from the # separator string s2. The first call (with a non-empty string s1 # specified) echoes a string consisting of the first token on stdout. The # function keeps track of its position in the string s1 between separate # calls, so that subsequent calls made with the first argument an empty # string will work through the string immediately following that token. In # this way subsequent calls will work through the string s1 until no tokens # remain. The separator string s2 may be different from call to call. # When no token remains in s1, an empty value is echoed on stdout. #:end docstring: ###;;;autoload function strtok () { : } #:docstring strtrunc: # Usage: strtrunc $n $s1 {$s2} {$...} # # Used by many functions like strncmp to truncate arguments for comparison. # Echoes the first n characters of each string s1 s2 ... on stdout. #:end docstring: ###;;;autoload function strtrunc () { n=$1 ; shift for z; do echo "${z:0:$n}" done } # provide string # string.bash ends here # ========================================================================== # # ==> Everything below here added by the document author. # ==> Suggested use of this script is to delete everything below here, # ==> and "source" this file into your own scripts. # strcat string0=one string1=two echo echo "Testing \"strcat\" function:" echo "Original \"string0\" = $string0" echo "\"string1\" = $string1" strcat string0 string1 echo "New \"string0\" = $string0" echo # strlen echo echo "Testing \"strlen\" function:" str=123456789 echo "\"str\" = $str" echo -n "Length of \"str\" = " strlen str echo # Exercise: # -------- # Add code to test all the other string functions above. exit 0 |
Michael Zick's complex array example uses the md5sum check sum command to encode directory information.
Example A-20. Directory information
#! /bin/bash # directory-info.sh # Parses and lists directory information. # NOTE: Change lines 273 and 353 per "README" file. # Michael Zick is the author of this script. # Used here with his permission. # Controls # If overridden by command arguments, they must be in the order: # Arg1: "Descriptor Directory" # Arg2: "Exclude Paths" # Arg3: "Exclude Directories" # # Environment Settings override Defaults. # Command arguments override Environment Settings. # Default location for content addressed file descriptors. MD5UCFS=${1:-${MD5UCFS:-'/tmpfs/ucfs'}} # Directory paths never to list or enter declare -a \ EXCLUDE_PATHS=${2:-${EXCLUDE_PATHS:-'(/proc /dev /devfs /tmpfs)'}} # Directories never to list or enter declare -a \ EXCLUDE_DIRS=${3:-${EXCLUDE_DIRS:-'(ucfs lost+found tmp wtmp)'}} # Files never to list or enter declare -a \ EXCLUDE_FILES=${3:-${EXCLUDE_FILES:-'(core "Name with Spaces")'}} # Here document used as a comment block. : << LSfieldsDoc # # # # # List Filesystem Directory Information # # # # # # # ListDirectory "FileGlob" "Field-Array-Name" # or # ListDirectory -of "FileGlob" "Field-Array-Filename" # '-of' meaning 'output to filename' # # # # # String format description based on: ls (GNU fileutils) version 4.0.36 Produces a line (or more) formatted: inode permissions hard-links owner group ... 32736 -rw------- 1 mszick mszick size day month date hh:mm:ss year path 2756608 Sun Apr 20 08:53:06 2003 /home/mszick/core Unless it is formatted: inode permissions hard-links owner group ... 266705 crw-rw---- 1 root uucp major minor day month date hh:mm:ss year path 4, 68 Sun Apr 20 09:27:33 2003 /dev/ttyS4 NOTE: that pesky comma after the major number NOTE: the 'path' may be multiple fields: /home/mszick/core /proc/982/fd/0 -> /dev/null /proc/982/fd/1 -> /home/mszick/.xsession-errors /proc/982/fd/13 -> /tmp/tmpfZVVOCs (deleted) /proc/982/fd/7 -> /tmp/kde-mszick/ksycoca /proc/982/fd/8 -> socket:[11586] /proc/982/fd/9 -> pipe:[11588] If that isn't enough to keep your parser guessing, either or both of the path components may be relative: ../Built-Shared -> Built-Static ../linux-2.4.20.tar.bz2 -> ../../../SRCS/linux-2.4.20.tar.bz2 The first character of the 11 (10?) character permissions field: 's' Socket 'd' Directory 'b' Block device 'c' Character device 'l' Symbolic link NOTE: Hard links not marked - test for identical inode numbers on identical filesystems. All information about hard linked files are shared, except for the names and the name's location in the directory system. NOTE: A "Hard link" is known as a "File Alias" on some systems. '-' An undistingushed file Followed by three groups of letters for: User, Group, Others Character 1: '-' Not readable; 'r' Readable Character 2: '-' Not writable; 'w' Writable Character 3, User and Group: Combined execute and special '-' Not Executable, Not Special 'x' Executable, Not Special 's' Executable, Special 'S' Not Executable, Special Character 3, Others: Combined execute and sticky (tacky?) '-' Not Executable, Not Tacky 'x' Executable, Not Tacky 't' Executable, Tacky 'T' Not Executable, Tacky Followed by an access indicator Haven't tested this one, it may be the eleventh character or it may generate another field ' ' No alternate access '+' Alternate access LSfieldsDoc ListDirectory() { local -a T local -i of=0 # Default return in variable # OLD_IFS=$IFS # Using BASH default ' \t\n' case "$#" in 3) case "$1" in -of) of=1 ; shift ;; * ) return 1 ;; esac ;; 2) : ;; # Poor man's "continue" *) return 1 ;; esac # NOTE: the (ls) command is NOT quoted (") T=( $(ls --inode --ignore-backups --almost-all --directory \ --full-time --color=none --time=status --sort=none \ --format=long $1) ) case $of in # Assign T back to the array whose name was passed as $2 0) eval $2=\( \"\$\{T\[@\]\}\" \) ;; # Write T into filename passed as $2 1) echo "${T[@]}" > "$2" ;; esac return 0 } # # # # # Is that string a legal number? # # # # # # # IsNumber "Var" # # # # # There has to be a better way, sigh... IsNumber() { local -i int if [ $# -eq 0 ] then return 1 else (let int=$1) 2>/dev/null return $? # Exit status of the let thread fi } # # # # # Index Filesystem Directory Information # # # # # # # IndexList "Field-Array-Name" "Index-Array-Name" # or # IndexList -if Field-Array-Filename Index-Array-Name # IndexList -of Field-Array-Name Index-Array-Filename # IndexList -if -of Field-Array-Filename Index-Array-Filename # # # # # : << IndexListDoc Walk an array of directory fields produced by ListDirectory Having suppressed the line breaks in an otherwise line oriented report, build an index to the array element which starts each line. Each line gets two index entries, the first element of each line (inode) and the element that holds the pathname of the file. The first index entry pair (Line-Number==0) are informational: Index-Array-Name[0] : Number of "Lines" indexed Index-Array-Name[1] : "Current Line" pointer into Index-Array-Name The following index pairs (if any) hold element indexes into the Field-Array-Name per: Index-Array-Name[Line-Number * 2] : The "inode" field element. NOTE: This distance may be either +11 or +12 elements. Index-Array-Name[(Line-Number * 2) + 1] : The "pathname" element. NOTE: This distance may be a variable number of elements. Next line index pair for Line-Number+1. IndexListDoc IndexList() { local -a LIST # Local of listname passed local -a -i INDEX=( 0 0 ) # Local of index to return local -i Lidx Lcnt local -i if=0 of=0 # Default to variable names case "$#" in # Simplistic option testing 0) return 1 ;; 1) return 1 ;; 2) : ;; # Poor man's continue 3) case "$1" in -if) if=1 ;; -of) of=1 ;; * ) return 1 ;; esac ; shift ;; 4) if=1 ; of=1 ; shift ; shift ;; *) return 1 esac # Make local copy of list case "$if" in 0) eval LIST=\( \"\$\{$1\[@\]\}\" \) ;; 1) LIST=( $(cat $1) ) ;; esac # Grok (grope?) the array Lcnt=${#LIST[@]} Lidx=0 until (( Lidx >= Lcnt )) do if IsNumber ${LIST[$Lidx]} then local -i inode name local ft inode=Lidx local m=${LIST[$Lidx+2]} # Hard Links field ft=${LIST[$Lidx+1]:0:1} # Fast-Stat case $ft in b) ((Lidx+=12)) ;; # Block device c) ((Lidx+=12)) ;; # Character device *) ((Lidx+=11)) ;; # Anything else esac name=Lidx case $ft in -) ((Lidx+=1)) ;; # The easy one b) ((Lidx+=1)) ;; # Block device c) ((Lidx+=1)) ;; # Character device d) ((Lidx+=1)) ;; # The other easy one l) ((Lidx+=3)) ;; # At LEAST two more fields # A little more elegance here would handle pipes, #+ sockets, deleted files - later. *) until IsNumber ${LIST[$Lidx]} || ((Lidx >= Lcnt)) do ((Lidx+=1)) done ;; # Not required esac INDEX[${#INDEX[*]}]=$inode INDEX[${#INDEX[*]}]=$name INDEX[0]=${INDEX[0]}+1 # One more "line" found # echo "Line: ${INDEX[0]} Type: $ft Links: $m Inode: \ # ${LIST[$inode]} Name: ${LIST[$name]}" else ((Lidx+=1)) fi done case "$of" in 0) eval $2=\( \"\$\{INDEX\[@\]\}\" \) ;; 1) echo "${INDEX[@]}" > "$2" ;; esac return 0 # What could go wrong? } # # # # # Content Identify File # # # # # # # DigestFile Input-Array-Name Digest-Array-Name # or # DigestFile -if Input-FileName Digest-Array-Name # # # # # # Here document used as a comment block. : <<DigestFilesDoc The key (no pun intended) to a Unified Content File System (UCFS) is to distinguish the files in the system based on their content. Distinguishing files by their name is just, so, 20th Century. The content is distinguished by computing a checksum of that content. This version uses the md5sum program to generate a 128 bit checksum representative of the file's contents. There is a chance that two files having different content might generate the same checksum using md5sum (or any checksum). Should that become a problem, then the use of md5sum can be replace by a cyrptographic signature. But until then... The md5sum program is documented as outputting three fields (and it does), but when read it appears as two fields (array elements). This is caused by the lack of whitespace between the second and third field. So this function gropes the md5sum output and returns: [0] 32 character checksum in hexidecimal (UCFS filename) [1] Single character: ' ' text file, '*' binary file [2] Filesystem (20th Century Style) name Note: That name may be the character '-' indicating STDIN read. DigestFilesDoc DigestFile() { local if=0 # Default, variable name local -a T1 T2 case "$#" in 3) case "$1" in -if) if=1 ; shift ;; * ) return 1 ;; esac ;; 2) : ;; # Poor man's "continue" *) return 1 ;; esac case $if in 0) eval T1=\( \"\$\{$1\[@\]\}\" \) T2=( $(echo ${T1[@]} | md5sum -) ) ;; 1) T2=( $(md5sum $1) ) ;; esac case ${#T2[@]} in 0) return 1 ;; 1) return 1 ;; 2) case ${T2[1]:0:1} in # SanScrit-2.0.5 \*) T2[${#T2[@]}]=${T2[1]:1} T2[1]=\* ;; *) T2[${#T2[@]}]=${T2[1]} T2[1]=" " ;; esac ;; 3) : ;; # Assume it worked *) return 1 ;; esac local -i len=${#T2[0]} if [ $len -ne 32 ] ; then return 1 ; fi eval $2=\( \"\$\{T2\[@\]\}\" \) } # # # # # Locate File # # # # # # # LocateFile [-l] FileName Location-Array-Name # or # LocateFile [-l] -of FileName Location-Array-FileName # # # # # # A file location is Filesystem-id and inode-number # Here document used as a comment block. : <<StatFieldsDoc Based on stat, version 2.2 stat -t and stat -lt fields [0] name [1] Total size File - number of bytes Symbolic link - string length of pathname [2] Number of (512 byte) blocks allocated [3] File type and Access rights (hex) [4] User ID of owner [5] Group ID of owner [6] Device number [7] Inode number [8] Number of hard links [9] Device type (if inode device) Major [10] Device type (if inode device) Minor [11] Time of last access May be disabled in 'mount' with noatime atime of files changed by exec, read, pipe, utime, mknod (mmap?) atime of directories changed by addition/deletion of files [12] Time of last modification mtime of files changed by write, truncate, utime, mknod mtime of directories changed by addtition/deletion of files [13] Time of last change ctime reflects time of changed inode information (owner, group permissions, link count -*-*- Per: Return code: 0 Size of array: 14 Contents of array Element 0: /home/mszick Element 1: 4096 Element 2: 8 Element 3: 41e8 Element 4: 500 Element 5: 500 Element 6: 303 Element 7: 32385 Element 8: 22 Element 9: 0 Element 10: 0 Element 11: 1051221030 Element 12: 1051214068 Element 13: 1051214068 For a link in the form of linkname -> realname stat -t linkname returns the linkname (link) information stat -lt linkname returns the realname information stat -tf and stat -ltf fields [0] name [1] ID-0? # Maybe someday, but Linux stat structure [2] ID-0? # does not have either LABEL nor UUID # fields, currently information must come # from file-system specific utilities These will be munged into: [1] UUID if possible [2] Volume Label if possible Note: 'mount -l' does return the label and could return the UUID [3] Maximum length of filenames [4] Filesystem type [5] Total blocks in the filesystem [6] Free blocks [7] Free blocks for non-root user(s) [8] Block size of the filesystem [9] Total inodes [10] Free inodes -*-*- Per: Return code: 0 Size of array: 11 Contents of array Element 0: /home/mszick Element 1: 0 Element 2: 0 Element 3: 255 Element 4: ef53 Element 5: 2581445 Element 6: 2277180 Element 7: 2146050 Element 8: 4096 Element 9: 1311552 Element 10: 1276425 StatFieldsDoc # LocateFile [-l] FileName Location-Array-Name # LocateFile [-l] -of FileName Location-Array-FileName LocateFile() { local -a LOC LOC1 LOC2 local lk="" of=0 case "$#" in 0) return 1 ;; 1) return 1 ;; 2) : ;; *) while (( "$#" > 2 )) do case "$1" in -l) lk=-1 ;; -of) of=1 ;; *) return 1 ;; esac shift done ;; esac # More Sanscrit-2.0.5 # LOC1=( $(stat -t $lk $1) ) # LOC2=( $(stat -tf $lk $1) ) # Uncomment above two lines if system has "stat" command installed. LOC=( ${LOC1[@]:0:1} ${LOC1[@]:3:11} ${LOC2[@]:1:2} ${LOC2[@]:4:1} ) case "$of" in 0) eval $2=\( \"\$\{LOC\[@\]\}\" \) ;; 1) echo "${LOC[@]}" > "$2" ;; esac return 0 # Which yields (if you are lucky, and have "stat" installed) # -*-*- Location Discriptor -*-*- # Return code: 0 # Size of array: 15 # Contents of array # Element 0: /home/mszick 20th Century name # Element 1: 41e8 Type and Permissions # Element 2: 500 User # Element 3: 500 Group # Element 4: 303 Device # Element 5: 32385 inode # Element 6: 22 Link count # Element 7: 0 Device Major # Element 8: 0 Device Minor # Element 9: 1051224608 Last Access # Element 10: 1051214068 Last Modify # Element 11: 1051214068 Last Status # Element 12: 0 UUID (to be) # Element 13: 0 Volume Label (to be) # Element 14: ef53 Filesystem type } # And then there was some test code ListArray() # ListArray Name { local -a Ta eval Ta=\( \"\$\{$1\[@\]\}\" \) echo echo "-*-*- List of Array -*-*-" echo "Size of array $1: ${#Ta[*]}" echo "Contents of array $1:" for (( i=0 ; i<${#Ta[*]} ; i++ )) do echo -e "\tElement $i: ${Ta[$i]}" done return 0 } declare -a CUR_DIR # For small arrays ListDirectory "${PWD}" CUR_DIR ListArray CUR_DIR declare -a DIR_DIG DigestFile CUR_DIR DIR_DIG echo "The new \"name\" (checksum) for ${CUR_DIR[9]} is ${DIR_DIG[0]}" declare -a DIR_ENT # BIG_DIR # For really big arrays - use a temporary file in ramdisk # BIG-DIR # ListDirectory -of "${CUR_DIR[11]}/*" "/tmpfs/junk2" ListDirectory "${CUR_DIR[11]}/*" DIR_ENT declare -a DIR_IDX # BIG-DIR # IndexList -if "/tmpfs/junk2" DIR_IDX IndexList DIR_ENT DIR_IDX declare -a IDX_DIG # BIG-DIR # DIR_ENT=( $(cat /tmpfs/junk2) ) # BIG-DIR # DigestFile -if /tmpfs/junk2 IDX_DIG DigestFile DIR_ENT IDX_DIG # Small (should) be able to parallize IndexList & DigestFile # Large (should) be able to parallize IndexList & DigestFile & the assignment echo "The \"name\" (checksum) for the contents of ${PWD} is ${IDX_DIG[0]}" declare -a FILE_LOC LocateFile ${PWD} FILE_LOC ListArray FILE_LOC exit 0 |
Stephane Chazelas demonstrates object-oriented programming in a Bash script.
Example A-21. Object-oriented database
#!/bin/bash # obj-oriented.sh: Object-oriented programming in a shell script. # Script by Stephane Chazelas. person.new() # Looks almost like a class declaration in C++. { local obj_name=$1 name=$2 firstname=$3 birthdate=$4 eval "$obj_name.set_name() { eval \"$obj_name.get_name() { echo \$1 }\" }" eval "$obj_name.set_firstname() { eval \"$obj_name.get_firstname() { echo \$1 }\" }" eval "$obj_name.set_birthdate() { eval \"$obj_name.get_birthdate() { echo \$1 }\" eval \"$obj_name.show_birthdate() { echo \$(date -d \"1/1/1970 0:0:\$1 GMT\") }\" eval \"$obj_name.get_age() { echo \$(( (\$(date +%s) - \$1) / 3600 / 24 / 365 )) }\" }" $obj_name.set_name $name $obj_name.set_firstname $firstname $obj_name.set_birthdate $birthdate } echo person.new self Bozeman Bozo 101272413 # Create an instance of "person.new" (actually passing args to the function). self.get_firstname # Bozo self.get_name # Bozeman self.get_age # 28 self.get_birthdate # 101272413 self.show_birthdate # Sat Mar 17 20:13:33 MST 1973 echo # typeset -f # to see the created functions (careful, it scrolls off the page). exit 0 |